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Abstract. A study of the strangeness production reaction pp→ pK+Λ for excess energies of ε ≤ 150MeV,
accessible at high-luminosity accelerator facilities like COSY, is presented. Methods to analyze the Dalitz
plot distribution and angular spectra in the Jackson and helicity frames are worked out and suitable
observables for extracting information on low-lying resonances that couple to the KΛ system and for
determining the Λp effective-range parameters from the final-state interaction are identified and discussed.
Furthermore, the chances for identifying the reaction mechanism of strangeness production are investigated.

PACS. 13.75.Ev Hyperon-nucleon interactions – 13.75.Jz Kaon-baryon interactions – 14.20.Gk Baryon
resonances with S = 0 – 25.40.Ny Resonance reactions

1 Introduction

Strangeness production reactions like pp→ pK+Λ are in-
teresting for various reasons. First of all such reactions re-
quire the creation of a new quark flavour which can occur
out of the vacuum but also from the quark-antiquark sea
in the protons. Thus, a thorough and dedicated study of
the strangeness production mechanism in those reactions
has the potential to ultimately deepen our understand-
ing of the internal structure of the baryons. Furthermore,
there are indications that several excited states of the nu-
cleon decay into the ΛK channel. However, reliable and
quantitative information is rather sparse. Investigations of
pp→ pK+Λmight allow to significantly improve the avail-
able data base. This concerns specifically the S11(1650)
and P11(1710) resonances. Finally, the presence of protons
as well as Λ hyperons in the final state opens the possibil-
ity to study the interaction between those baryons, which
is still poorly known but whose knowledge is essential for
questions related to the validity of the SU(3) flavour sym-
metry.

Concerning the mechanism of strangeness production
in nucleon-nucleon (NN) collisions one has to concede
that it is not yet understood —although there is a signifi-
cant experimental data base and despite of numerous ded-
icated theoretical investigations. Until recently only data
at fairly high energies were available. The analysis [1–6] of
those data indicated that different production mechanisms
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are compatible with the experimental evidence. The data
on the pp → pK+Λ reaction cross-section and also the
momentum spectra of the final K-meson and Λ-hyperon
can be well reproduced either by K-meson or π-meson ex-
change models. Only the large amount of Λ-hyperon recoil
polarization data [7–10] collected at high energies from the
inclusive pp→ ΛX reaction can be considered as evidence
for a π-meson exchange dominance [11–14].

At high energies where the Regge phenomenology is
applicable the energy dependence of the reaction cross-
section should indicate the reaction mechanism. But one
has to keep in mind that at those energies the energy de-
pendence of the K-meson and π-meson exchange is almost
identical. Indeed, in Regge theory the energy dependence
of the reaction amplitude is governed by the exchange tra-
jectory α(t) via sα(t), where s is the square of the invari-
ant collision energy and t is the squared four-momentum
transferred from the initial nucleon to the final nucleon or
hyperon, for the exchange of a nonstrange as well as of a
strange meson. The overall data analysis indicates that the
pion exchange trajectory amounts to απ(t) = 0.85(t−m2

π),
while the kaon exchange is given by αK(t) = 0.7(t−m2

K).
Within the Regge theory the difference between the π and
K trajectories is only due to the mass of the exchange par-
ticles and not by the trajectory intercept at t = 0. On the
other hand, one can certainly say that the data exclude a
dominance of the ρ-meson exchange, whose trajectory is
given by αρ(t) = 0.5 + 0.9t. The K∗ and K∗∗ exchanges
have also large intercepts, 0.5 and 0.35, respectively, and
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are likewise not supported by the available data for the
pp→ pK+Λ reaction cross-section.

Over the last few years the COSY facility has pro-
vided a large amount of accurate experimental data on
strangeness production in NN collisions at low ener-
gies [15–23]. Theoretical model studies [24–30] that dealt
with those data suggested that the excitation of reso-
nances in the KΛ channel could play an important if
not dominant role for the reaction pp → pK+Λ in the
near-treshold regime. If this is indeed the case one has to
be cautious in extrapolating from the mechanisms that
dominate at high energies, i.e. exchanges by different me-
son trajectories, to what happens at low energies. Specif-
ically, it cannot be excluded that, say, vector mesons like
ρ couple strongly to the resonances in question, namely
the S11(1650) and the P11(1710), and therefore play a de-
cisive role in the strangeness production near threshold.
Also, the investigations so far have made clear that the
interaction between the particles in the final state plays
a role and influences significantly the energy dependence
of the production cross-section in the threshold region.
Among the three possible channels (KΛ, KN , ΛN) it is
presumably only the final-state interaction (FSI) in the
ΛN system which is important [31–36]. The correspond-
ing scattering lengths are not well determined from the
few ΛN (and ΣN) scattering data that exist, but are ex-
pected to be in the order of 1 to 2 fm [37–40].

In this paper we present a study of the strangeness
production reaction pp → pK+Λ in the energy range ac-
cessible at the COSY accelerator facility, i.e. for excess
energies up to ε ≈ 150MeV. However, it is not the aim of
our work to suggest yet another model for that reaction.
Rather we want to embark on a more general analysis of
this reaction. In view of the complexity of the situation
where neither the production mechanism nor the final-
state interaction are reliably known we restrict ourselves
to the case of unpolarized experiments. Also, we consider
only two reaction mechanisms, namely pion exchange and
K-meson exchange. However, we want to emphasize that
these mechanisms are understood as being representatives
of a whole class of reaction scenarios rather than of the
concrete processes. Accordingly, K exchange represents a
scenario where there is strangeness exchange in the pro-
duction mechanism and where the elementary reaction
amplitude (KN → KN) is governed by t-channel ex-
change diagrams, so that its energy dependence is rather
smooth. In particular, there are no resonances involved.
Pion exchange, on the other hand, stands for a scenario
where no strangeness exchange occurs in the production
mechanism. At the same time the elementary reaction am-
plitude (πN → KΛ) is dominated by resonance excita-
tions (S11(1650), P11(1710), P13(1720), . . . ) which implies
a strong and characteristic energy dependence. In our in-
vestigation we will look at the consequences of these two
classes of reaction scenarios for the reaction pp → pK+Λ
and analyse their signature in observables like the total
cross-section, angular distributions and the Dalitz plot.
Thereby we will address the following questions: a) Is
it possible to discriminate between different production

mechanisms? b) What can be learned about the FSI? Is
it possible to extract the effective-range parameters for
the Λp interaction? c) Can one determine the parameters
of the S11(1650)- and the P11(1710)-resonance from the
strangeness production reaction?

There are, of course, additional important and more
concrete questions. For example, is the strangeness-
exchange mechanism dominated by the KN → KN re-
action or rather by K∗N → KN? Likewise, are the res-
onances predominantly excited by pion exchange or is ρ
exchange important as well? Those questions will not and
cannot be addressed in the present investigation. For that
a throrough investigation of the spin dependence of the
various observables is required which is beyond the scope
of the present paper.

Our paper is organized as follows: in sect. 2 we intro-
duce those experimental observables which can be used
as a tool for investigating the properties of the Λp final-
state interaction and of resonances in the KΛ channel but
also for a possible identification of the reaction dynamics.
Section 3 provides the overall structure of the reaction
amplitude and describes the explicit application to the
π- and K-meson exchange mechanisms. The KN → KN
and πN → KΛ transition amplitudes and a description of
the treatment of the Λp final-state interaction are given
in sects. 4, 5 and 6, respectively. The total pp → pK+Λ
reaction cross-section is analyzed in sect. 7, while sects. 8
and 9 focus on the Dalitz plot and on angular correlations.
The paper ends with a summary of our results and some
concluding remarks.

2 Kinematic constraints and relevant

observables

In this section we provide a detailed discussion of those
observables that are directly related to the issues we want
to address (FSI effects, resonance parameters, production
mechanism). Some of these observables like Dalitz plot dis-
tributions or invariant mass spectra are well known and
widely used in the analysis of experiments. Other observ-
ables discussed below can be determined only through the
full exclusive reconstruction of the reaction events, which
can be done only at a some specific experimental facil-
ities like COSY. Since the formalism can be applied to
any three-body final-state reaction we discuss it in a more
general form. Generally speaking the formalism can be
applied to the analysis of any meson production in NN
collisions (π, η, ω, . . . ), independently of the collision en-
ergy.

For the consideration of different kinematical variables
it is convenient to express the invariant amplitude for the
reaction a + b → 1 + 2 + 3, as depicted in fig. 1d), in
terms of one initial and four final independent invariants,
namely by

s = (Pa + Pb)
2 ,

s1 = (P1 + P2)
2 ,

s2 = (P2 + P3)
2 ,
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Fig. 1. a) Pion and b) kaon exchange contributions to the re-
action pp → pK+Λ, included in our investigation. A denotes
the full (KN or πN → K+Λ) transition amplitudes. c) Repre-
sentation of the resonance model for the reaction pp→ pK+Λ.
d) General diagram for t-channel contributions to the reaction
a + b → 1 + 2 + 3 with intermediate resonances R coupled to
the {23} subsystem and exchange particle x.

t1 = (Pa − P1)
2 ,

t2 = (Pb − P3)
2 , (1)

where the Pi denote the four-momentum of the corre-
sponding particle i. The fifth independent final variable
is the azimuthal rotation angle φ around the beam axis.
We also use the excess energy ε =

√
s −m1 −m2 −m3.

The differential reaction cross-section can then be written
as a function of the four invariants at fixed s,

dσ

ds1ds2dt1dt2
=

|M(s, s1, s2, t1, t2)|2
210π4λ(s,m2

a,m
2
b)
√
−∆4

, (2)

where the φ-dependence is already integrated out. Here
λ(x, y, z) = (x− y − z)2 − 4yz is the Källen function and
∆4 is the Gramm determinant of a 4 × 4 symmetric ma-
trix whose elements are a combination of s, s1, s2, t1, t2
and of the masses of the initial and final particles [41].
The physical region of the invariants is determined by the
condition ∆4 ≤ 0. The integration of eq. (2) over t1 and
t2 results in the famous Dalitz plot [42]

dσ

ds1ds2
=

|M(s, s1, s2)|2
28π3sλ1/2(s,m2

a,m
2
b)
. (3)

If the reaction amplitude is constant, i.e.M = const, then
the distribution of the Dalitz plot is isotropic. Therefore,
any resonance or FSI can be detected through a Dalitz plot
analysis. However, possible structures in the subsystem
formed by particles 1 and 2 (we use the shorthand notation
{12} etc. in the following), say, can interfere with those

appearing in the {23} subsystem because the differential
cross-section is a function of both invariants s1 and s2,
and this dependence does not factorize. Such interferences
might produce so-called kinematic reflections in the Dalitz
plot projections, i.e. in the invariant mass spectra. In case
of the reaction pp → pK+Λ the Dalitz distribution is a
useful tool to study resonances in the K+Λ system and
also the Λp (final state) interaction.

Obviously, the Dalitz plot presents already partially
integrated data, while the full information about the re-
action dynamics for an unpolarized 3-body final state is
given explicitly by eq. (2). Different specific and more
practical variables were proposed by Gottfried and Jack-
son considering the {23} → 2 + 3 decay and possible res-
onances coupled to the {23} subsystem [43,44]. Further-
more, for a more general case it is interesting to investigate
the relation between the production mechanism and the
angular correlations in the decay of the unstable interme-
diate particle. In that case it is more useful to consider
the decay {23} → 2 + 3 and to measure the angular dis-
tribution of particle 3 in the rest frame of {23}.

In order to understand the meaning of the angular cor-
relations one best considers the reaction a+ b→ 1+2+3
in terms of the subprocess a+b→ 1+{23} and the subse-
quent {23} → 2 + 3 decay, as depicted in fig. 1d). In that
case the 3-body phase space can be expressed in terms of
the 2×2-body phase space convolution as

dΦ3 = dΦ2(s,m
2
1, s2) dΦ2(s2,m

2
2,m

2
3) ds2, (4)

where the 2-body phase space, Φ2, might be taken in dif-
ferent representations. In particular, it is convenient to
use

dΦ2(s,m
2
1, s2) =

π

2λ1/2(s,m2
1, s2)

dt1, or

dΦ2(s2,m
2
2,m

2
3) =

λ1/2(s2,m
2
2,m

2
3)

8s2
dΩ3. (5)

Both forms for dΦ2 are equivalent because of the relation
between the four-momentum transfer and the scattering
angle for the 2-body scattering process. Here Ω3 is the
solid scattering angle of particle 3 in the {23} rest frame.
In principle, in the {23} rest frame the orientation of the
momentum vector p3 can be expressed by the vector pb as
well as by p1. The first selection corresponds to the Jack-
son frame while selecting p1 corresponds to the helicity
frame.

Equation (5) indicates the physical meaning of the
solid angle Ω3 for the diagrams depicted in fig. 1 and nat-
urally defines the axis pb along which the angular distri-
bution of particle 3 should be measured in the rest frame
{23}. This solid angle is defined as Ω3b. Indeed, consider-
ing the subprocess x+ b→ 2 + 3 it is clear that any reso-
nance structure appearing in the {23} subsystem will be
directly reflected in the angular distribution in the Jackson
frame. With respect to Ω3b the differential cross-section is
given by

dσ

ds2dt1dΩ3b
=

λ1/2(s2,m
2
2,m

2
3)

210π4λ(s,m2
a,m

2
b)s2

|M(s, s2, t1, Ω3b)|2.
(6)
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The polar angle of Ω3b is called Jackson angle θ3b [43,44],
while the azimuthal angle φ3b was originally defined by
Treiman and Yang [45]. The relation between the Jackson
angle and the invariants is given by

cos θ3b=
2s2(t2−m2

b−m2
3)+(s2+m

2
b−t1)(s2+m2

3−m2
2)

λ1/2(s2,m2
b , t1)λ

1/2(s2,m2
3,m

2
2)

,

(7)
which follows from the definition of t2 in eq. (1) when con-
sidering the reaction x + b → 2 + 3. If the x + b → 2 + 3
amplitude does not depend on Ω3b, the angular distri-
bution dσ/dΩ3b in the Jackson frame is isotropic. The
angular distribution reflects the Ω3b-dependence of the el-
ementary x+b→ 2+3 reaction amplitude. It is important
that due to the symmetry of the reaction with respect to
the beam and target nucleon the Jackson angle is likewise
given along the beam axis, i.e. particle b can be replaced
by a in the previous formulation. Moreover, considering
the production of the {23} subsystem in a specific spin
state one can parameterize the decay angular distribution
dσ/dΩ3b in terms of the spin density matrix [44–46].

The helicity frame defines the solid angle Ω31 with
θ31 being called the helicity polar angle, while λ31 is the
corresponding azimuthal angle. The helicity frame can be
naturally explained by considering the Dalitz plot repre-
sentation. The solid angle Ω31 appears through an exten-
sion of the invariant mass s3 = (P1 + P3)

2 in the frame
specified by P2 + P3 = (Pa + Pb) − P3 = (

√
s2,0), i.e. in

the {23} rest frame. The helicity polar angle is then given
by

cos θ31=
2s2(m

2
1+m

2
2−s1)+(s−s2−m2

1)(s2+m2−m3)

λ1/2(s, s2,m2
1)λ

1/2(s2,m2
2,m

2
3)

(8)

and is contained in the Dalitz plot. For fixed s2 the al-
lowed range of s1 is given by eq. (8) with cos θ31 = ±1.
Actually, eq. (8) defines the contour of the Dalitz plot
in the s1 versus s2 plane. Any anisotropy in the helicity
polar-angle distribution is not necessarily a signature for
the appearance of higher partial waves in the final system.
Rather, it reflects structures in the invariant mass spectra
of the {12} and {23} subsystems. Indeed, for any fixed
value of s2 it is possible to project the Dalitz plot into the
s1 distribution, which can be converted into a θ31 distri-
bution by eq. (8). The same can be done also for the s2
projection.

Generally speaking, the helicity angle depends only on
the kinematics of the final state while the Jackson angle is
a function of both the initial- and final-state kinematics.

The Chew-Low plot is obtained by integration of
eq. (6) with respect to the solid angle Ω3b and yields

dσ

ds2dt1
=

λ1/2(s2,m
2
2,m

2
3)

28π3λ(s,m2
a,m

2
b)s2

|M(s, s2, t1)|2 , (9)

assuming that the matrix element does not depend on Ω3b

(or Ω31). The Chew-Low presentation is the most conve-
nient way for the evaluation of the reaction cross-section.
It allows to account for the t1-dependence of the reaction
amplitude via the operator structure of the vertex, the
propagator and the form factors, as well as of the mass
structure in only one of the final two-body subsystems.

3 The reaction amplitude

We consider the target a as a spin-(1/2) particle and the
exchange of a spin-less boson x with mass µ. At this stage
we do not account for the FSI. The most general form of
the production amplitude is then given by

M =
fa1x
µ

F (t1) ū(p1)Ou(pa)
Axb→23(s2, t2)

t1 − µ2
, (10)

where fa1x is the coupling constant of the a1x vertex and
F (t1) is the form factor at this vertex. The operator O is
γ5 or 1 depending on the parity of the exchanged boson.
For π, η, η′, etc. exchanges it is γ5, while for σ, a0, f0
exchanges it is just 1. The quantity Axb→23 is the invariant
amplitude for the process x + b → 2 + 3. It is related to
the physical scattering amplitude and can be parametrized
through

|AπN→KΛ|2 = 64π2sKΛ

[

λ(sKΛ,m
2
π,m

2
N )

λ(sKΛ,m2
K ,m

2
Λ)

]1/2
dσ

dΩ
,

|AKN→KN |2 = 64π2sKN
dσ

dΩ
, (11)

by utilizing existing differential cross-section data for the
two amplitudes in question. In this equation sKΛ and
sKN are the squared invariant energies of the KΛ or KN
subsystems, respectively, while mN , mK and mΛ are the
masses of the nucleon, the kaon and the Λ-hyperon. Since
the data determine only the on-shell values of AKN→KN
and AπN→KΛ the off-shellness of the amplitude in eq. (10)
has to be taken into account. The minimal modification
of the on-shell amplitude to account for this is to include
a form factor.

In any case, the x+ b→ 2+3 invariant scattering am-
plitude can be expressed in terms of partial waves via [47]

Axb→23 = 8π
√
s2 χ

+
f

[

f1+
(σ · qf )(σ · qi)

qfqi
f2

]

χi, (12)

where f1 and f2 are defined by

f1 =
∞
∑

l=1

[T+
l−1(s2)− T−l+1(s2)]P

′
l (cos θ) ,

f2 =
∞
∑

l=1

[T−l (s2)− T+
l (s2)]P

′
l (cos θ) . (13)

Here l is the orbital angular momentum of the final state,
P ′l (cos θ) is the derivative of the Legendre polynomial
Pl(cos θ), and θ is the scattering angle in the x+b→ 2+3
center-of-mass (cm) system. Note that T+

l and T−l are the
partial-wave (PW) amplitudes corresponding to the total
angular momentum J = l ± 1/2. In eq. (12) χi and χf
are the two-dimensional Pauli spinors of initial and final
fermions and σ are the Pauli spin matrices. Furthermore,
qi and qf are the cm momenta of the initial and final
states whose moduli are given by

q2i =
λ(s2,m

2
x,m

2
b)

4s2
, q2f =

λ(s2,m
2
2,m

2
3)

4s2
(14)
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for on-shell scattering. The x+b→ 2+3 differential cross-
section in terms of the invariant amplitude is

dσ

dΩ
=

1

64π2s

qf
qi
|Axb→23|2, (15)

while in terms of the amplitudes F = f1 + f2 cos θ and
G = −f2 sin θ it is given by

dσ

dΩ
=
qf
qi

(|F |2+|G|2) . (16)

F and G are the non-flip and spin-flip amplitudes, respec-
tively, and their partial-wave representations read

F =

∞
∑

l=0

[(l + 1)T+
l +lT−l ]Pl(cos θ),

G =

∞
∑

l=1

sin θ [T+
l −T−l ]P ′l (cos θ). (17)

For the computation of the π- and K-meson exchange
mechanisms we need the elementary K+p → K+p and
π0p → K+Λ amplitudes and also the parameters of the
corresponding pion and kaon emission vertices (πNN and
ΛNK coupling constants and cut-off mass of the perti-
nent vertex form factors), cf. diagrams a) and b) in fig. 1.
The elementary KN → KN and πN → KΛ amplitudes
are specified in the next sections. With regard to the cou-
plings f we use the standard relation to the (pseudoscalar)
coupling constants g,

fπNN = gπNN
mπ

2mN
, fΛNK = gΛNK

mK

2
√
mNmΛ

, (18)

and we take the value gπNN=13.45. The ΛNK coupling
constant is fixed by applying standard SU(3) symmetry
relations,

gΛNK = −gπNN
1 + 2α√

3
, (19)

where α is the F to D ratio, α = F/(F + D). Adopting
the quark model estimate of α = 2/5 together with gπNN
specified above we obtain gΛNK = −13.98. We furnish the
πNN and ΛNK vertices with monopole form factors

F (t1) =
Λ2
x − µ2

Λ2
x − t1

, (20)

utilizing different cut-off masses for the π- and K-meson
exchanges. These cut-off masses are considered as free pa-
rameters and are adjusted to the data. For COSY energies,
the exact form of this form factor is not important.

In phenomological approaches the relative phase be-
tween the amplitudes is not fixed so that the total reaction
amplitude is given by

M =MK +Mπe
iψ , (21)

where ψ can, in principle, depend on the energy. The im-
portance of the relative phase or, more generally speaking,
the role of interference effects between the π- andK-meson

exchange remains so far unclear. In the π + K calcula-
tions of refs. [6,48] it was found that K-meson exchange
dominates the reaction pp → pK+Λ and the interference
was neglected. Later on the role of interference effects was
exploited in ref. [49] in a study of the pp → pK+Λ to
pp → pK+Σ0 cross-section ratio. But also in this work
it was concluded that the reaction pp → pK+Λ itself is
insensitive to the interference, because it is dominated by
K-meson exchange. Here we study the π- and K-meson
exchanges separately, i.e. we do not add the amplitudes
as indicated by eq. (21) and therefore the uncertainty of
the relative phase ψ is not relevant for the present inves-
tigation.

4 The KN → KN amplitude

We use the KN amplitude of the Jülich meson-exchange
model. A detailed description of the model is given in
refs. [50,51]. The model yields a satisfactory description
of the available experimental data on elastic and charge
exchange KN scattering including angular spectra and
polarization observables up to a KN invariant mass of√
s2 ' 2GeV. For the analysis of the pp→ pK+Λ reaction

only the K+p → K+p scattering amplitude is necessary.
Figure 2 shows the differential cross-section for elastic
K+p scattering at different invariant energies. The strong
forward peaking of the data and in the calculation comes

Fig. 2. Differential cross-sections of the reaction K+p→ K+p

in the center-of-mass system at different invariant collision
energies. The solid lines show the results from the Jülich
model [51]. The data are from ref. [68].
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from the Coulomb interaction. Apart of this peaking the
angular spectra are isotropic indicating a dominance of
the s-wave amplitude in the K+p→ K+p reaction.

Note that the KN amplitude of the Jülich model was
extensively used recently for imposing limits of the Θ+

pentaquark width from data on the reaction K+d →
K0pp [52,53] and for an analysis of the DIANA results [54]
where the Θ+ was observated in K+-meson collisions with
Xe nuclei [55].

For the evaluation of the K exchange contribution to
the reaction pp→ pK+Λ one needs the KN amplitude for
the energy range mK+mN ≤

√
s2 ≤

√

2mN (2mN + T )−
mΛ, where T is the proton beam energy. The energy at
COSY is limited to T ≤ 2.88GeV which means that√
s2 ≤ 1.9GeV. Thus, the energy range for which the

KN model of the Jülich group was designed is sufficient
to analyze data in the COSY regime. However, in order
to connect with data for pp → pK+Λ at higher energies,
specifically with total cross-sections, one needs to know
the KN scattering amplitude at

√
s2 > 1.8GeV. Here we

adopt a phenomenological approach and parameterize the
KN scattering amplitude by experimental data [56–59]
utilizing eq. (11).

5 The πN → KΛ amplitude

The Jülich πN model [60] currently does not include the
coupling to the KΛ channel, therefore we use the PW
analysis of Sotona and Zofka [61]. Their amplitudes con-
tain (s-channel) resonances as well as t-channel K∗-meson
exchange and other background contributions. The PW
amplitudes are given in ref. [61] up to

√
s2 = 2.3GeV.

For the analysis of data in the COSY regime we need
the πN → KΛ amplitude up to

√
s2 ≤ 2.05GeV. At

higher energies the available πN → KΛ data (differen-
tial cross-sections and Λ-hyperon recoil polarization) can
be reproduced by K∗-meson exchange alone taking into
account absorptive corrections [62–65]. Thus, we extend
the amplitude of Sotona and Zofka appropriately so that
we can study the pp→ pK+Λ reaction cross-section over a
larger energy range and consider data collected at COSY
as well as those available at higher energies. The non-flip
and spin-flip amplitudes for the K∗-meson exchange is
taken from ref. [66] with parameters listed in ref. [61]. In
order to reproduce the available data for

√
s2 > 2.3GeV

we readjust the coupling constants for the K∗-meson ex-
change to g0 = −24.0 and g1 = −83.3 as compared to
those from ref. [61].

Figure 3 shows the total π−p → K0Λ reaction cross-
section as a function of the invariant collision energy [67].
The solid line is the result with the PW amplitudes of
ref. [61]. Obviously, the data below 2.3GeV are fairly well
described. The dashed line indicates the contribution from
the K∗-meson exchange, which dominates the reaction
above invariant energies of about 2GeV.

A typical feature of the πN → KΛ reaction is the
strong angular asymmetry and the large Λ-hyperon po-
larization which occurs already at energies close to the re-
action threshold. Corresponding experimental results are

Fig. 3. Total π−p → K0Λ reaction cross-section as a func-
tion of the invariant collision energy. The data are taken from
ref. [67]. The solid line is the result based on the PW ampli-
tudes of ref. [61] while the dashed line shows the contribution
from the K∗-meson exchange.

shown in figs. 4 and 5 where the squares are data from
Knasel et al. [68], while the circles are from the exper-
iment of Baker et al. [69]. Evidently, the polarization is
already nonzero at

√
s2 = 1633MeV, the lowest-energy

where data are available, which corresponds to an excess
energy of only ε = 19.67MeV. The recoil polarization is
defined as

P =
2=(FG∗)
|F |2 + |G|2 , (22)

where the spin-nonflip (F ) and spin-flip (G) amplitudes
are given in eq. (17) in terms of the PW amplitudes. The
s-wave alone results in zero recoil polarization, while the
p-wave alone results in a strong angular dependence of
the polarization. Note that above

√
s2 ' 1.8GeV the Λ-

hyperon recoil polarization starts to show a stronger angle
dependence and a change of sign appears at a certain cos θ.
Let us mention also that P does not vanish even at en-
ergies as high as

√
s2 = 3.2GeV (which is the maximal

energy where polarization data are available).

The solid lines in figs. 4 and 5 are the results based on
the full PW amplitude of ref. [61], while the dashed lines
indicate results obtained with inclusion of the resonances
only. It is clear that the nonresonant background plays a
significant role already at energies close to the reaction
threshold and is essential for a quantitative reproduction
of the differential observables.
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Fig. 4. Differential cross-sections for the reaction π−p→ K0Λ

in the center-of-mass system at different invariant collision en-
ergies. The solid lines are results based on the full PW ampli-
tudes of ref. [61]. The dashed lines are obtained when only the
resonant contributions are taken into account. The squares are
data from ref. [68], while the circles are from ref. [69].

Fig. 5. Λ polarizations for the reaction π−p → K0Λ in the
center-of-mass system at different invariant collision energies.
Same description as in fig. 4.

One can see from fig. 4 that there is partly an inconsis-
tency between the two data sets and it is obvious that the
PW analysis cannot reproduce simultaneously both sets
of data. We should say that there are also polarization
data by Knasel et al. [68] for the energy

√
s2 = 1633MeV.

However, the error bars of these data are so large that they
are not useful for our analysis. As a consequence, they are
not shown in fig. 5.

The structure of the elementary πN → KΛ amplitude
suggests that a measurement of the invariant KΛ mass
spectra and the angular correlations according to eqs. (7),
and (8) might allow to isolate the contribution of the π
exchange to the pp→ pK+Λ reaction. However, it is possi-
ble that due to the short-ranged nature of the strangeness
production reaction higher partial waves in the virtual
πN → KΛ amplitude are suppresed so that the s-wave
dominates the pp → pK+Λ observables at COSY ener-
gies. In that case the angular correlation of eq. (7) from
π- and K-meson exchanges would be similar and the rel-
evant spectrum should be isotropic. But it should be still
possible to detect any s-wave resonance in the KΛ system
through an analysis of the Dalitz plot distribution and the
angular correlation of eq. (8). We will come back to this
issue below.

6 The Λp final-state interaction

Production reactions like NN → K+ΛN require a large
momentum transfer between the initial and final baryons.
Thus, the range of the production mechanism will be much
smaller than the characteristic range of the interactions in
the final states. In such a case the energy dependence of
the reaction amplitude is driven primarily by that of the
scattering amplitude of the outgoing particles and it was
proposed [70] to factorize the reaction amplitude

M→M×AFSI , (23)

where AFSI denotes the amplitude due to the interaction
between the final particles. AFSI is in principle a 3-body
amplitude. However, it is generally assumed that the Λp
interaction dominates over the other possible final-state
interactions and therefore one replaces AFSI by AΛp. The
validity of this assumption is to some extent questionable.
It is based primarily on the observation that the absolute
value of the Λp scattering length is substantially larger
than those for K+p and K+Λ scattering, although one
has to admit that the latter is actually not known. In any
case, very close to the reaction threshold the relative mo-
menta between all final particles are small and one should
account for the interference between the FSI in the vari-
ous two-body systems. In that kinematics the interference
term between the large and small scattering lengths might
be not negligible. For instance in the analysis [71,72] of the
γd → pnη reaction very close to the reaction threshold,
i.e. at ε < 20MeV it was found that the NN and ηN
final-state interactions interfere. But in the present inves-
tigation we concentrate on excess energies in the order
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of 100MeV and, therefore, the simplification in the FSI
treatment should be justified.

According to the above arguments the near-threshold
mass dependence of the Λp spectrum for the pp→ pK+Λ
reaction might be dominated by the energy dependence
of the Λp scattering amplitude. Since the range of the Λp
invariant mass is from mΛ + mN to ε + mΛ + mN FSI
effects should be visible in differential observables at any
collision energy. On the other hand, in case of the total re-
action cross-section FSI effects should be dominantly seen
at energies close to the reaction threshold. At higher en-
ergies the FSI affects only a small part of the available
phase space [73,74], i.e. only the region where the rela-
tive momenta of the Λp system are sufficiently small and,
therefore, have a comparably low weight in the integration
over the whole phase space.

A very simple treatment of FSI effects was proposed by
Watson [75] and Migdal [76]. Close to the reaction thresh-
old the invariant scattering amplitude is dominated by the
s-wave and can be expressed in terms of the effective range
expansion as

AΛp(q) = N0(mΛ+mN )

[

−1

a
+
rq2

2
− iq

]−1

, (24)

where a and r are the scattering length and the effective
range, respectively, and q is the relative momentum be-
tween the Λ hyperon and final proton,

q =
λ1/2(sΛp,m

2
Λ,m

2
p)

2
√
sΛp

. (25)

N0 is a normalization constant, which cannot be fixed
within the Watson-Migdal approximation.

While the Watson-Migdal prescription is well applica-
ble to final-state interactions that are characterized by a
large scattering length like in case of the NN interaction,
say, this is not true for Λp where the expected scattering
lengths are only in the order of one to two fermi [36]. Here
one should resort at least to the so-called Jost function ap-
proach which was found in ref. [36] to yield resonable qual-
itative results. For a Λp scattering amplitude that is given
by the effective-range approximation, cf. eq. (24), over the
whole energy range, the FSI factor in the Jost function ap-
proach can be evaluated analytically and amounts to

AΛp(q) =
q + iβ

q − iα , (26)

where α and β are related to the scattering parameters
via

a =
α+ β

αβ
, r =

2

α+ β
(27)

with α < 0 and β > 0. In our notation the scattering
length a is defined with a negative sign, cf. eq. (24), which
explains the difference to the formulas given by Gold-
berger and Watson [70]. Equation (26) implies the limits

lim
q→0

AΛp(q) = −
β

α
, lim

q→∞
AΛp(q) = 1, (28)

Fig. 6. The enhancement factor R (cf. eq. (30)) as a function
of the Λp effective range r and scattering length a. The dashed
lines show results for R = 5–50 calculated at ε = 2MeV. The
hatched (open) box indicates the range of r and a for the Λp
interaction in the triplet (singlet) state, taken from refs. [38–
40]. The star indicates the parameters used in our analysis,
while the solid line shows the family of r and a resulting in
R = 8.7.

which can be used as a measure for the relative strength
of the FSI with respect to the contribution from the pro-
cesses without FSI. Equation (26) can be written in the
form

AΛp(q) =
[

rβ2

2
+
rq2

2

] [

−1

a
+
rq2

2
− iq

]−1

, (29)

which at small q is close to the Watson-Migdal parame-
terization of eq. (24) (apart from the unknown normal-
ization constant N0). In addition, the Jost function ap-
proach also includes the correct behavior for large mo-
menta, cf. eq. (28).

At present a solid estimation of FSI effects for the reac-
tion pp→ pK+Λ is difficult because of two reasons: a) the
Λp system can be in the singlet and triplet states that can
have different effective-range parameters a and r. It is not
known whether the Λp system is predominantly produced
in one or the other state. We should mention though that
most microscopic models of the reaction pp→ pK+Λ pre-
dict a dominance of the triplet contribution. b) The ef-
fective range parameters are not well known, i.e. they are
afflicted with large uncertainties. This is visualized in fig. 6
where the hatched box shows the range of r and a, for the
triplet case, taken from some recent Y N potential mod-
els [38–40]. The open box in fig. 6 indicates the variation in
the singlet effective-range parameters. It is clear that the
uncertainties of the Λp interaction allow a large freedom
of FSI effects in the reaction pp→ pK+Λ.
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In order to illustrate how strongly the FSI with differ-
ent scattering parameters might influence the pp→ pK+Λ
reaction cross-section, we evaluate the so-called enhance-
ment factor R as a function of the excess energy. R is
defined as the integral of |AΛp(q)|2 from eq. (26) over
the nonrelativistic 3-body phase space, normalized to the
phase space volume Φ3, i.e.

R(ε) =
1

Φ3

√
2µε
∫

0

√

2µ̃

(

ε− q
2

2µ

)

q2 + β2

q2 + α2
q2 dq

= 1 +
4β2 − 4α2

(−α+
√

α2 + 2µε)2
, (30)

where µ and µ̃ are reduced masses given by

µ =
mΛmN

mΛ+mN
, µ̃ =

mK(mΛ+mN )

mK+mΛ+mN
, (31)

and Φ3 is given by the integral of eq. (30) without the
factor |A(q)|2 from eq. (26).

The dashed lines in fig. 6 show the enhancement factor
R for the specific excess energy ε = 2MeV, as a function of
the effective range and scattering length. One can see that
the variations of the Λp triplet parameters in refs. [38–40]
exclude any values R > 12. On the other hand, the sin-
glet parameters allow for almost any magnitude of the
enhancement factor. As just mentioned above, most mi-
croscopic models of the reaction pp → pK+Λ favour the
triplet contribution. In our analysis we do not consider
singlet and triplet Λp FSI effects separately but use aver-
aged parameters fixed to the value shown in fig. 6 by the
star [37].

7 The pp → pK+Λ reaction cross-section

Figure 7 shows the pp → pK+Λ reaction cross-section
as a function of the excess energy. The squares represent
data that were available before the COSY aera collected in
ref. [67]. The circles are from measurements at the COSY
facility, performed by the COSY-11 [16,17,21] and TOF
Collaborations [23]. Apparently the COSY experiments
provide a substantial contribution to the data base, specif-
ically they are the only source of information for the be-
haviour of the cross-section near the reaction threshold.

For a general overview it is always useful to compare
the data to the phase space behaviour, i.e. to consider the
given reaction kinematics but set the reaction amplitude
to M = const. In case of the total reaction cross-section
the relevant kinematics is the dependence of the 3-body
phase space on the excess energy, which in the nonrela-
tivistic case1 is given by eq. (30). The integration can be
performed analytically and yields

σ(ε) =

√
mKmNmΛ

27π2(mK+mN+mΛ)3/2
ε2

√

s2−4sm2
N

|M|2 . (32)

1 Actually, the nonrelativistic and the relativistic phase
space for the reaction pp → pK+Λ are almost identical for
ε < 2GeV.

Fig. 7. Total cross-section for the reaction pp → pK+Λ as
a function of the excess energy. The upper figure shows re-
sults without FSI, while for the lower figure the Λp FSI was
included via eq. (26). The solid lines are results for the K-
meson exchange mechanism. The dashed lines are obtained
with π-meson exchange and with the full πN → KΛ transi-
tion amplitude. The dotted lines show results for a constant
reaction amplitude M without (a) and with (b) FSI effects.
The squares are data taken from ref. [67], while the circles are
from experiments at the COSY facility [16,17,21,23].

This results is shown by the dotted line in fig. 7a) for the
squared invariant amplitude |M|2 = 2.2 · 107 µb, which
was normalized to the data at ε ' 130MeV. Following
the discussion given in sect. 6 one expects that close to
the threshold the data deviate from a calculation that ne-
glects the Λp FSI, and this is indeed the case, cf. fig. 7a).
For example, at ε ' 2MeV the phase space line underes-
timates the data by a factor of around 9.

When we now introduce FSI effects within the Jost
function approach, eq. (26), we can easily reproduce the
energy dependence of the data by adopting the parameters

β = 212.7MeV and α = −72.3MeV, (33)

which correspond to the low-energy parameters a =
−1.8 fm and r = 2.8 fm. The resulting cross-section is
shown by the dotted line in fig. 7b).

The employed low-energy parameters are indicated in
fig. 6 by a star. Obviously, they are well within the present
uncertainty range of the triplet parameters. But we would
like to emphasize that any (singlet or triplet) combina-
tion of effective-range parameters that lies on the solid
line of fig. 6 would give similar results, i.e. would re-
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produce the energy dependence observed in the experi-
ment. There is no unique solution. Thus, the presented
specific fit does not provide any deeper understanding of
the strangeness production mechanism or the hyperon-
nucleon interaction. It only illustrates that any reaction
mechanism, which implies a sufficiently weak energy de-
pendence, would be compatible with the empirical infor-
mation.

Let us now come to concrete reaction mechanisms.
The solid line in fig. 7a) shows the result for K-meson
exchange without FSI. In our calculation the sKN - and
t2-dependence of the KN → KN scattering amplitude,
the t1-dependence of the propagator and the KNΛ ver-
tex and formfactor and the sΛp-dependence of the FSI
(cf. below) is taken into account and we perform a full
four-dimensional integration of eq. (2). The results were
normalized to the data at ε ' 1GeV by adjusting the cut-
off mass of the form factor eq. (20) to Λ ' 1.7GeV. In
contrast to the pure phase space, the K-meson exchange
well reproduces the energy dependence of the data also at
high energies, which will be discussed later. The results
obtained with the FSI of eq. (26) utilizing the parameters
of eq. (33) are shown by the solid line in fig. 7b). It is
interesting to see that the results for K-meson exchange
are practically identical to the phase space behaviour over
a large energy range.

Results for the π exchange mechanism are shown by
the dashed line in fig. 7a), for the case without Λp FSI.
Again, we normalize our results at ε ' 1GeV by adjusting
the cut-off mass to Λ ' 1.6GeV. It is evident that the en-
ergy dependence predicted by the π-meson exchange dif-
fers from the one resulting from K-meson exchange and
the phase space calculations. As a consequence, the cal-
culation with FSI (dashed line in fig. 7b)), substantially
underestimates the data below ε = 200MeV.

In order to shed light on the difference in the energy
dependence of the total cross-sections resulting from K-
and π-meson exchange let us take a look at the elementary
πN → KΛ amplitude AπN→KΛ. The square of this am-
plitude can be obtained from data via eq. (11). It is shown
in fig. 8. Here the angular dependence is integrated out so
that the amplitude depends only on the invariant collision
energy sKΛ or the final momentum qf , respectively. The
experimental results (solid circles) are cross-section data
taken from ref. [67], divided appropriately by phase space
factors. It is evident that |AπN→KΛ|2 is strongly energy
dependent. Specifically, it does not exhibit the behaviour
of a standard s-wave amplitude, which would be constant
in the near-threshold region, nor that of a p-wave, which
should be proportional to q2f . Rather the data seem to rise
linearly with the moment qf , cf. the dotted line in fig. 8.

According to the PW analysis of ref. [61] the reaction
πN → KΛ is dominated by the S11(1650) and P11(1710)
resonances for energies up to

√
sKΛ ' 1.8GeV, as dis-

cussed in sect. 5. These resonance amplitudes, ARπN→KΛ,
are given by [61]

ARπN→KΛ = −8π
√
sKΛ

qiqf

√
ΓπNΓKΛMRΓ

M2
R−sKΛ−ifMRΓ

, (34)

Fig. 8. The πN → KΛ amplitude squared as a function of
the final momentum qf and the invariant collision energy sKΛ
(axis at the top). The dashed and dash-dotted lines show the
contribution from the S11 and P11 resonances, respectively, of
the PW analysis presented in ref. [61]. Their sum corresponds
to the solid line. The dotted line indicates the qf -dependence.
The circles are experimental results, extracted from the data
given in ref. [67], cf. text.

where MR and Γ are the mass and full width of the reso-
nance,

f =
δ

100
f lf+

100−δ
100

f li ,

f li =
φl(Rqi) qi
φl(RqRi ) q

R
i

, f lf =
φl(Rqf ) qf
φl(RqRf ) q

R
f

, (35)

and the initial and final momenta are

q2i =
λ(sKΛ,mπ2,m2

N

)

4sKΛ
, q2f =

λ(sKΛ,m
2
K ,m

2
Λ)

4sKΛ
. (36)

qRi and qRf are the corresponding momenta at the reso-
nance pole position, i.e. at

√
sKΛ = MR. The interaction

radius was taken as R = 1.696GeV−1. The function φl
ensures the correct threshold energy dependence and is
given by [69,77,78]

φ0(x) = 1, φ1(x) =
x2

1+x2
, (37)

for s and p waves, respectively. Finally, the partial decay
width was parametrized by

√

ΓπNΓKΛ = B
√

f lff
l
i . (38)

In the following calculations we use the S11- and P11-
resonance parameters as fixed by the PW analysis of
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Fig. 9. Total cross-section for the reaction pp → pK+Λ as
a function of the excess energy. The dashed line is the re-
sult for the π-meson exchange mechanism with the S11(1650)-
resonance amplitude, while the dashed-dotted line was ob-
tained with the P11(1710)-resonance alone. The solid line shows
the full calculation. In all cases the Λp FSI is taken into account
via eq. (26) with parameters specified in eq. (33). For compar-
ison the lines are normalized at the same excess energy. The
squares are data taken from ref. [67], while the circles are from
experiments at the COSY facility [16,17,21,23].

ref. [61] which we already introduced in the sect. 5. Specif-
ically, we use for the S11(1650)-resonance

MR = 1678MeV, Γ = 117MeV,

B = 0.2175, δ = 7.8855, (39)

and for the P11(1710)-resonance

MR = 1730MeV, Γ = 543MeV,

B = 0.1565, δ = 12.893. (40)

The square of these resonance amplitudes are shown in
fig. 8 by the dashed (S11) and dash-dotted lines (P11), re-
spectively. The solid line is the sum of these two contribu-
tions which illustrates that those two resonances together
indeed reproduce the bulk of the experimental amplitude.

Predictions for the pp→ pK+Λ cross-section utilizing
the pion exchange mechanism with the S11 or P11 reso-
nances are shown in fig. 9 by the solid and dashed lines, re-
spectively. The Λp FSI is included via eq. (26) with the pa-
rameters specified in eq. (33). It is obvious that the energy
dependence of the calculation based on the P11-resonance
differs substantially from the experiment. The curve ob-
tained for the S11-resonance is in good agreement with the
data for ε < 40MeV, but deviates at higher energies.

The results discussed above make clear that, in con-
trast to the K-meson exchange scenario, the pion ex-

change mechanism yields a much stronger energy depen-
dence of the production cross-section, due to the excita-
tion of resonances. However, it would be premature to see
the individual disagreement of the S11 as well as of the P11

case with the energy dependence of the data as an evidence
for aK-meson exchange dominance of the pp→ pK+Λ re-
action. Indeed, by exploiting the freedom in the interplay
between the S11(1650) and P11(1710) resonances it is still
possible to reproduce the cross-section data over a large
energy range, as is well illustrated in refs. [24–26]. To dis-
cern between the two scenarios considered here (K versus
π exchange) one must consider differential observables like
those introduced in sect. 2. Corresponding results will be
discussed in the next two sections.

Before that we want to comment on the t1-dependence.
For that purpose we consider the Chew-Low integration
of eq. (9) with the reaction amplitude Mπ neglecting the
FSI, i.e. the sΛp-dependence. After integrating over t2 or
cos θ3b (see fig. 1 and eq. (7)) the pp → pK+Λ reaction
cross-section due to π-meson exchange is given by

σ(ε)=
g2
πNN

28π2(s2−2sm2
N )

s+
∫

s
−

dsKΛ

t+
∫

t
−

dt1
λ1/2(sKΛ,m

2
K ,m

2
Λ)

sKΛ

× −t1
(t1−m2

π)
2

[

Λ2−m2
π

Λ2−t1

]2

|AπN→KΛ(sKΛ)|2, (41)

where t1 is the squared four-momentum transferred from
the initial to the final proton and the limits of integrations
are

s− = (mK+mΛ)
2, s+ = (mK+mΛ+ε)

2,

t± = 2m2
N−

s+sKΛ−m2
N

2

±
√

s−4m2
N λ1/2(s, sKΛ,m

2
N )

2
√
s

. (42)

For cut-off masses in the order of Λ = 1.6GeV the
t1-dependence of eq. (41) becomes significant only for
t1 > −0.3GeV2, which is accessible only at ε ≥ 200MeV.
Indeed, at threshold

t± = mN (mN −mK −mΛ) ' −0.63GeV2, (43)

so that for energies not too far from the threshold the
reaction cross-section depends only very weakly on t1.
Therefore, for pion exchange —but in fact, also for kaon
exchange— the t1-dependence of the reaction amplitude
M is almost negligible for excess energies ε < 200MeV.
Only for energies around ε ≈ 1GeV and above the t1-
dependence becomes noticable. Then the squared reaction
amplitude is significantly reduced so that, after integration
over the 3-body phase space, a perfect description of the
reaction cross-section at higher energies is achieved for π
as well as for K exchange, in contrast to the calculation
where M = const, cf. the corresponding results in fig. 7.

This observation suggest that a completely differential
treatment of the reaction pp → pK+Λ within the four-
dimensional space of eq. (2) is not necessary, because in
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any case the very smooth t1-dependence does not provide
access to conclusive information about the vertex function,
the propagator of the exchange particles and the form fac-
tor for bombarding energies within the COSY regime.

8 The Dalitz plot

The Dalitz plot for the reaction pp→ pK+Λ at the excess
energy ε = 130MeV is presented in fig. 10. The results are
based on theK-meson exchange mechanism with inclusion
of the Λp FSI. We consider the excess energy ε = 130MeV
because we found that this is more or less the optimal min-
imal energy where a separation between the FSI effects
and the S11-resonance is still possible. Of course, for the
K-meson exchange mechanism only the structure coming
from the Λp FSI is detectable in the Dalitz plot distribu-
tion at low sΛp and there is no visible structure due to the
KΛ subsystem. Recall that for a constant reaction ampli-
tude M = const the distribution is isotropic. In case of
a K-meson exchange dominance the experimental Dalitz
plot should resemble the result shown in fig. 10.

The projections of the Dalitz, i.e. the squared invari-
ant mass spectra in theKΛ and Λp subsystems, are shown
in fig. 11. The solid histograms are calculations for the K-
meson exchange mechanism including the Λp FSI given
by eq. (26). The dashed lines indicate the phase space dis-
tribution, which results from the integration of the Dalitz
plot of eq. (3) over one of the invariant mass squared. For
the Λp subsystem the squared invariant mass spectrum is

Fig. 10. The Dalitz plot distribution for the reaction pp →
pK+Λ at the excess energy ε = 130MeV as a function of the
invariant mass squared sKΛ and sΛp. The shown result is for
the K-meson exchange mechanism including the Λp FSI. The
solid contour is the Dalitz plot boundary given by the helicity
angle cos θ31 = ±1 of eq. (8).

Fig. 11. The sKΛ and sΛp invariant mass spectra for the reac-
tion pp→ pK+Λ at ε=130MeV. The solid histograms show the
K-meson exchange calculations with inclusion of the Λp FSI.
The dashed lines indicate the phase space distribution given
by eq. (44), while the dotted line is the phase space distribu-
tion multiplied by the FSI amplitude |AΛp|

2 from eq. (26). The
dashed and dotted lines are shown in arbitrary normalization.

given by

dσ

dsΛp
=
λ1/2(s, sΛp,m

2
K)λ1/2(sΛp,m

2
Λ,m

2
p)

28π3 s
√

s2 − 4sm2
N sΛp

|M|2, (44)

where |M|2 = const. The KΛ distribution can be easily
obtained in a similar way. The phase space distributions
in fig. 11 are arbitrarily normalized. As compared to the
phase space the result for the K-meson exchange mech-
anism indicates an enhancement at low Λp masses. At
the same time the KΛ distribution is enhanced at large
masses, which results from the kinematic reflection. We
should emphasize, however, that the enhancement comes
practically only from the Λp FSI.

Let us now compare the full K-meson exchange calcu-
lation with the simple FSI factorization approach given by
the product of the phase space distribution from eq. (44)
and the Λp FSI amplitude |AΛp|2 of eq. (26). Correspond-
ing results are shown by the dotted line in fig. 11. The lat-
ter was slightly renormalized in order to make it optically
distinguishable from the (solid) histogram. One can see
that the Λp spectrum obtained by factorization of the FSI
and phase space practically coincides with the full calcula-
tion. This demonstrates that in case of an almost constant
reaction amplitude the Λp distribution can be savely used
for the evaluation of the hyperon-nucleon scattering pa-
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Fig. 12. The Dalitz plot distribution for the reaction pp →
pK+Λ at ε = 130MeV as a function of the invariant mass
squared sKΛ and sΛp. The shown result is for the π exchange
mechanism with excitation of the S11(1650)-resonance and in-
cludes also the Λp FSI. The solid contour is the Dalitz plot
boundary given by eq. (8). The arrow indicates the square of
the S11(1650)-resonance mass.

rameters, as was done in refs. [33,34]. Note, however, that
there is still a theoretical uncertainty involved in such an
evaluation depending strongly on the method applied [36].
In any case it is clear that, ifK-meson exchange dominates
the pp→ pK+Λ reaction, then this could be unambigously
deduced from the Dalitz plot.

Now we turn to the π-meson exchange mechanism and
the excitation of baryonic resonances in the πN → KΛ
reaction. The resonances can be recognized by a Breit-
Wigner-type shape in the ΛK invariant mass spectrum
and by the angular dependence of the S11(1650) and
P11(1710) decay products, which is determined by the
resonance spin and production mechanism [41]. But one
needs to distinguish the resonances in the ΛK subsystem
from the Λp FSI, because the latter mimics a resonance-
like structure in the Λp subsystem with a pole atmΛ+mN

and width given roughly by the Λp scattering parameters.
Therefore, it is necessary to consider the complete Dalitz
plot distribution. However, if the baryonic resonances and
the FSI overlap we should return to the completely dif-
ferential treatment in the four-dimensional space given by
eq. (2), i.e. consider the t1 as well as the t2 invariants.

The Dalitz plot distribution for the π-meson exchange
mechanism, with excitation of the S11(1650)-resonance
and inclusion of the Λp FSI, is shown in fig. 12. The
distribution substantially differs from the result obtained
for the K-meson exchange scenario. Specifically, the
influence of the resonance can be clearly seen. The arrow
in fig. 12 indicates the resonance position, i.e. the square

Fig. 13. The Dalitz plot distribution for the reaction pp →
pK+Λ at ε = 130MeV as a function of the invariant mass
squared sKΛ and sΛp. The shown result is for the π exchange
mechanism with excitation of the P11(1710)-resonance and in-
cludes also the Λp FSI. The solid contour is the Dalitz plot
boundary given by eq. (8). The arrow indicates the squared of
the P11(1710)-resonance mass.

of the resonance mass. A sufficiently large excess energy
like ε = 130MeV allows to separate the effects due to the
S11(1650)-resonance and the Λp FSI, which is important
for the data evaluation. The situation is different for
π-meson exchange and P11(1710) excitation, shown in
fig. 13. Here the signal of the P11-resonance overlaps with
the Λp FSI. In principle, even in this case the Dalitz
plot might be sufficient to reconstruct the resonance
contribution but it would be more promising to perform
a combined Dalitz plot and t2 or Jackson angle analysis.
Of course, such an analysis requires large experimental
statistics.

Since there are now structures in the KΛ as well
as Λp subsystems one might expect a substantial dis-
tortion of the Dalitz-plot projections. This issue is ad-
dressed in fig. 14 where we show the sKΛ and sΛp invariant
mass spectra. The solid histograms are the full results for
the π-meson exchange mechanism, with excitation of the
S11(1650)-resonance and including the Λp FSI, while the
dashed lines indicate the phase space distributions given
by eq. (44). The dash-dotted line in fig. 14b) corresponds
to the phase space distribution multiplied by the FSI am-
plitude, |AΛp|2, from eq. (26). Obviously, and opposite to
the K-meson exchange scenario discussed above, now the
factorization in terms of the Λp FSI and the phase space
deviates significantly from the full calculation. The pres-
ence of the S11(1650)-resonance changes the Λp invariant
mass spectra. This observation should be kept in mind
when analyzing the invariant mass spectra given by the
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Fig. 14. The sKΛ and sΛp squared invariant mass spectra for
the reaction pp→ pK+Λ at ε = 130MeV. The solid histograms
show the π-meson exchange calculation with inclusion of the
S11(1650)-resonance and the Λp FSI. The dashed lines indicate
the phase space distribution given by eq. (44). The dotted line
in a) is the phase space distribution multiplied by the squared
S11 resonant amplitude given by eq. (34). The dash-dotted
line in b) is the phase space distribution multiplied by the
squared FSI amplitude |AΛp|

2 from eq. (26). The dashed and
dotted lines are shown with arbitrary normalization. The arrow
indicate the squared mass of the S11(1650)-resonance.

projection of the Dalitz plot distribution with the aim to
extract the Λp effective-range parameters from the FSI. A
priori the full structure of the reaction amplitude and the
effects due to possible kinematic reflections in the different
final subsystems are not known. Thus, one should rather
consider slices of the Dalitz plot than projections for the
aforementioned analysis in order to be on the safe side
—though this again requires larger experimental statis-
tics.

The dotted line in fig. 14a) is the phase space distri-
bution multiplied by the square of the S11(1650) ampli-
tude, cf. eq. (34). Again this result differs significantly
from the full π-meson exchange calculation because of the
kinematic reflection of the Λp FSI. Indeed, the enhance-
ment with respect to the results obtained by factorization
at large sKΛ stems entirely from the FSI.

9 Angular correlations

As was discussed in sect. 2 the angular correlations are
given by eq. (7) in the Jackson frame and by eq. (8) in the

helicity frame. While the former angular spectra, i.e. the
Jackson and Treiman-Yang angular distributions, contain
information directly related to the partial-wave decompo-
sition of the reaction amplitude, this is not the case for
the helicity angle distributions. Specifically, an anisotropy
in the latter distributions is not necessarily a signature for
contributions of higher partial waves, as already pointed
out in sect. 2.

With regard to the dependence of the reaction ampli-
tude on the t1 invariant we concluded already in sect. 7
that it should be rather smooth for ε < 200MeV for π as
well as forK exchange. Therefore, in this energy range the
t1-dependence is not a good tool to distinguish between
different production mechanisms.

In case of the K-meson exchange mechanism the t2-
dependence is related to the KN scattering amplitude.
Since K+p elastic scattering is dominated by the s-wave
one would expect an isotropic distribution of the Jackson
angle of eq. (7). However, the situation should be very
different for the pn → pK0Λ reaction which involves the
K+n → K0p subprocess. Due to the strong angular de-
pendence of the charge exchange amplitude, which origi-
nates from the isospin I = 0 component, the Jackson angle
distribution should exhibit p-wave contributions [53].

For the π-meson exchange mechanism the t2 distribu-
tion contains the angular dependence of the πN → KΛ
transition amplitude and can be converted by eq. (7)
to the angular spectrum in the Jackson frame. If the
S11(1650)-resonance dominates the reaction the Jackson
angle distribution is isotropic, i.e. similar to that resulting
from the K+-meson exchange scenario. If the πN → KΛ
amplitude is given entirely by the P11(1710)-resonance,
the Jackson angle distribution is again isotropic, which is
obvious from eqs. (16) and (17). Finally, if both S11 and
P11 resonances contribute to the pp → pK+Λ reaction
then the Jackson angle distribution would show the in-
terference between the s and p waves given by eqs. (12)
and (13). A proper analysis of the angular distribution
would then allow to extract the relative contributions of
these resonances.

The angular distribution in the helicity frame just give
the projection of the Dalitz plot as a function of the
squared invariant mass of a particular subsystem while
the squared invariant mass of the other subsystem is fixed.
For the reaction pp→ pK+Λ one can study the Λp invari-
ant mass spectra at a fixed or partially integrated squared
invariant mass of the KΛ subsystem. Since sKΛ is fixed
one can transform, by eq. (8), the sΛp distribution to the
helicity angle distribution. That allows to present the data
in a more convenient way because −1 ≤ cos θ31 ≤ 1. But
one should remember that the helicity angle distribution
is just a slice of the Dalitz plot and it does not contain
more information than the Dalitz plot itself. We discuss
the usefulness of the helicity angle spectra now.

Figure 15 shows the Λp helicity angle distribution for
different intervals of the squared invariant mass of the KΛ
subsystem, for the reaction pp→ pK+Λ at ε = 130MeV.
Note that according to eq. (8) the maximal Λp mass corre-
sponds to forward helicity angles. The solid histograms are
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Fig. 15. The Λp helicity angle spectra at different squared
invariant masses of the KΛ subsystem, sKΛ, for the reaction
pp → pK+Λ at ε = 130MeV. The solid histograms show the
π-meson exchange calculation with inclusion of the S11(1650)-
resonance and the Λp FSI. The dashed histograms are the cor-
responding results for the K-meson exchange mechanism.

results obtained for the π-meson exchange scenario with
S11(1650) excitation and with Λp FSI, while the dashed
histograms are results for the K-meson exchange mecha-
nism. It is obvious that these distributions are excellent
observables for the extraction of the Λp effective-range
parameters, since by performing cuts on sKΛ one can
strongly reduce the influence of that part of the Dalitz plot
which is distorted by the resonance. Of course, for a sepa-
ration of the singlet and triplet parameters corresponding
spin-dependent experiments need to be performed and one
should apply reliable extraction methods like the one ad-
vocated in ref. [36], based on dispersion theory.

Figure 16 shows the KΛ helicity angle distribution
for different intervals of the squared invariant mass of
the Λp subsystem. Again the calculations were done at
ε = 130MeV and for the π-meson exchange mechanism
with the S11-resonance and the Λp FSI (solid histograms)
and also for the K-meson exchange mechanims (dashed
histograms). We explicitly cut the Λp FSI region by tak-
ing the distributions only for sΛp > 4.4GeV2. Now the
spectra show the S11(1650)-resonance structure whereas
they do not show any structure in case of the K-meson
exchange. Thus, if there is any structure these spectra
might be fitted by a resonance amplitude, i.e. a Breit-
Wigner form say, in order to determine the resonance mass
and width. Moreover, the fitting procedure can be applied

Fig. 16. The KΛ helicity angle spectra at different squared
invariant masses of the Λp subsystem, sΛp, for the reaction
pp → pK+Λ at ε = 130MeV. The solid histograms show the
π-meson exchange calculations with inclusion of the S11(1650)-
resonance and the Λp FSI. The dashed histograms are the cor-
responding results for the K-meson exchange mechanism.

at different intervals of sΛp following eq. (8). The proce-
dure should provide resonance parameters independently
of the range sΛp if the FSI region is properly cut. Indeed,
fitting as a test the calculated KΛ helicity angle spectrum
at 4.6 < sΛp < 4.7GeV2 we obtained the resonance pa-
rameters MR = 1.672GeV and Γ = 116.6MeV. These
resonance parameters are close to those given by eq. (39),
i.e. those used for the actual calculation with the π-meson
exchange mechanism. We examined the procedure by al-
lowing an admixture of contributions from the K-meson
exchange mechanism. It turned out that the extraction of
the resonance parameters from the helicity angle distribu-
tions yields quite stable results.

10 Summary

We presented a study of the strangeness production re-
action pp → pK+Λ for the energy range accessible at
high-luminosity accelerator facilities like COSY. All rel-
evant observables of the reaction for unpolarized beam
and target nucleons are discussed in terms of their de-
pendence on the final four independent invariants. The
reaction amplitude is constructed by considering the π-
as well as K-meson exchange production mechanisms and
employing elementary KN → KN and πN → KΛ tran-
sition amplitudes taken from a microscopic model (KN)
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and a partial-wave analysis (πN → KΛ). Effects of the
Λp final-state interaction are included too by means of
the so-called Jost function approach.

Though our analysis utilizes only π- and K-meson ex-
change we would like to emphasize that the results are,
in fact, more general. All predictions given for the con-
sidered spin-independent observables for the π-meson ex-
change mechanism, say, would be practically the same for
any other nonstrange meson exchange, i.e. for the σ, η,
ρ mesons. The quantum numbers and the masses of the
exchange particle are reflected in the dependence on the
squared four-momentum t1 transferred from the initial to
the final nucleon. However, the range of t1 accessible in
experiments with excess energies up to ε ≈ 150MeV, say,
is simply too small for generating any noticeable differ-
ences in the studied observables. Thus, the two produc-
tion mechanisms examined in the present investigation can
be considered as representatives of two general classes of
reaction scenarios, namely where either a nonstrange or
strange meson is exchanged in the production process. At
the same time this means, of course, that unpolarized ex-
periments within this energy region will not allow to dis-
criminate more specifically between different production
mechanisms.

We addressed the questions whether the considered ob-
servables can be used to determine the Λp interaction or to
identify resonances that couple to the KΛ channel. It was
found that the Dalitz plot and its sliced projections or the
helicity angle spectra are indeed useful for extracting spe-
cific information on the Λp interaction and possible bary-
onic resonances in the KΛ subsystem. The Jackson angle
distribution is a crucial tool to study the onset of higher
partial waves in the KN → KN and πN → KΛ transi-
tion amplitudes. Specifically, if the reaction is dominated
by the S11(1650)-resonance we expect zero Λ-hyperon re-
coil polarization and an isotropic distribution of the Jack-
son angle. When both S11 and P11 resonances contribute
the Jackson angle distribution should show an interfer-
ence as well as recoil polarization. Furthermore, the Dalitz
plot would explicitly indicate the resonance structure in
the KΛ system and at sufficiently large excess energy like
ε = 130MeV the S11(1650)-resonance effects can be well
isolated from the Λp FSI.

We proposed to study specifically the KΛ helicity an-
gle spectra at large Λp masses squared, sΛp > 4.4GeV2,
(in order to eliminate effects of the Λp FSI) for a reli-
able determination of (S11(1650)) resonance parameters.
We also pointed out that the Λp effective-range parame-
ters could be most reliably extracted from the Λp helicity
angle spectra with cuts sKΛ > 2.9GeV2.

The results of our calculations are based on a Monte
Carlo integration of the three-body phase space, includ-
ing the mentioned elementary reaction amplitudes for
KN and πN → KΛ, that involves 106 sample events.
To determine resonance parameters from the Dalitz plot
and the KΛ helicity angle spectra it is necessary to ac-
cumulate a data set with large statistics. Only then it
is possible to achieve an acceptable confidence level for
the extracted resonance and (Λp) effective-range param-

eters. In this context we would like to point out that
presently the estimates [79] for the mass and width of the
S11(1650)-resonance are rather uncertain: 1640 ≤ MR ≤
1680MeV and 145 ≤ ΓR ≤ 190MeV, respectively. The
quoted P11(1710)-resonance parameters are 1680 ≤MR ≤
1740MeV for the mass and 50 ≤ ΓR ≤ 250MeV for width.
The uncertainties of the decay rates of the resonances to
the KΛ mode is 3–11% and 5–25% for the S11 and P11,
respectively.
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